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Crisis Beneath the Sands: Groundwater Degradation and Health Risks in the
Northeastern Algerian Sahara — The Case of Oued Souf Valley!
Ayoub Barkat?, Foued Bouaicha3, Gyoérgy Szabd*

Abstract:

The Oued Souf Valley in southern Algeria, part of the vast Sahara, is

confronting a severe groundwater crisis driven by overexploitation,  Keywords:
human-induced pollution, and climate variability. This study presents N orthwest Sahara
an extensive assessment of hydro chemical, bacteriological, and heavy  Aquifer System,
metal contamination across three major aquifers: the shallow  groundwater pollution;
phreatic, complex terminal, and continental intercalary aquifers. = Human Health Risk
Results from 58 monitoring wells and detailed sample analyses reveal  Assessment; Ecological
alarming contamination levels in the phreatic aquifer, with electrical ~ Risk Assessment.
conductivity up to 7500 pS/cm, nitrate concentrations exceeding 150

mg/L, and high levels of aluminium, lead, and manganese. All

phreatic samples showed very high pollution levels based on the

Groundwater Pollution Index (GPl). Spatial analysis linked

contamination patterns to intensive agriculture and urban expansion.

Deeper aquifers displayed lower contamination but still frequently

exceeded WHO standards for drinking water and irrigation due to

high salinity and mineralization. Health risk assessments revealed

hazard index (HI) values exceeding 1 for adults in 8 samples and for

children in all samples, highlighting significant risks from long-term

exposure to metals. Geostatistical modelling showed fluctuating

groundwater levels between 2008 and 2021, driven by human

activity and infrastructure failures. While ecological risk from heavy

metals was generally low, localized samples showed considerable or

high risk, especially due to lead contamination. The findings

underscore the urgent need for integrated water management, stricter

pollution controls, improved infrastructure, and targeted public

health interventions to safeguard this vulnerable region’s water

resources and its population’s health.
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1. Introduction

Water is a vital resource that shapes the distribution of human societies, the structure of
economies, and the dynamics of political relations (Bechkit et al., 2024; Hamma et al.,
2024; Rahal et al., 2024). lts uneven availability, driven by geographical and climatic
factors, profoundly influences where and how communities develop, particularly in
water-scarce regions (Barkat et al., 2022; Barkat et al., 2023a; Rahal et al., 2023; Barkat
et al., 2023b). Access to water not only supports domestic and agricultural needs but
also determines regional stability and power dynamics, as shared water sources often
become points of tension or cooperation (Debabeche et al., 2022). In this context, the
challenges of water scarcity extend beyond local concerns, highlighting the need for
coordinated governance, sustainable management, and collaborative international
efforts (Barkat et al., 2021).

Water scarcity presents significant challenges to achieving the Sustainable
Development Goals (SDGs) (Sayed, 2015), particularly in arid and semi-arid regions
where communities heavily depend on groundwater resources. Groundwater,
accounting for approximately 98% of the Earth’s liquid freshwater, plays a critical role
in meeting domestic and agricultural water demands, especially in these regions (Panda
et al., 2006; Taany et al., 2009; UNWWDR, 2015). It serves as the primary water source
for nearly 2.5 billion people worldwide (Tatawat et al., 2008). However, its sustainable
management faces numerous obstacles, including climate change, population growth,
excessive abstraction, inadequate management practices, and poor coordination
(Ravikumar et al., 2011). These issues have led to the depletion of aquifers, falling
groundwater levels due to shifts in rainfall patterns and increased evapotranspiration,
overextraction for agricultural and industrial use, and heightened contamination risks
(Jha et al., 2007; Momodu et al., 2010; Luna et al., 2012). Such challenges have direct
implications for several SDGs, notably Clean Water and Sanitation, Zero Hunger, Good
Health and Well-being, and Climate Action (Velis et al., 2017). Addressing these
challenges necessitates coordinated efforts from governments, communities, and
international organizations to develop and implement sustainable groundwater
management policies, particularly in arid regions (Srivastava et al., 2018; Zamani et al.,
2022).

In southern Algeria, the Oued Souf Valley as a part of the vast Sahara relies almost
entirely on groundwater to meet its drinking water and agricultural needs. This region
is underlain by extensive groundwater reserves within geological formations of varying
depth and thickness, which are part of the Northwestern Sahara Aquifer System. This
system encompasses three major aquifers: the superficial phreatic aquifer, the complex
terminal aquifer, and the continental intercalary aquifer, the latter two of which contain
multiple, layered water-bearing formations. Together, these aquifers constitute one of
the world’s largest hydraulic reserves, with an estimated mobilizable potential of 5
billion cubic meters of water (ANRH, 1986; CDTN, 1992).

Despite the abundance of groundwater in the Oued Souf Valley, overexploitation
since the 1980s followed by population growth, urban expansion, and economic
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development has created significant public health and environmental issues. Intensive
pumping from deep aquifers, coupled with the discharge of untreated wastewater and
the absence of a proper sewage system, has resulted in the contamination of shallow
groundwater. This has disrupted the regional water system’s equilibrium and threatens
its long-term sustainability (Kadri et al., 2018).

These developments have triggered profound environmental and social changes in
the region. The fragile ecological balance of the northern Sahara has been disturbed,
infrastructure has been compromised, agriculture has suffered, and the traditional urban
landscape including the historic Ghout system has been transformed. Public health
challenges have worsened due to contamination of shallow aquifers with waste and
nitrates, resulting in water stagnation and the proliferation of waterborne and parasitic
diseases such as skin disorders, leishmaniasis, malaria, and typhoid (Cote, 1998).

In response to these crises, local authorities launched a major project in 2005 aimed
at mitigating pollution and managing rising shallow groundwater levels. This project
included sewerage networks, wastewater treatment initiatives, and water drainage
systems. However, several obstacles prevented the project from fully achieving its
objectives (Khezzani et al., 2018; Bouzegag et al., 2020). The failure of the vertical
drainage system illustrates how human activities can exacerbate natural processes,
affecting the fluctuations of the phreatic aquifer in the Oued Souf Valley. The
contamination of shallow groundwater, its unauthorized use for irrigation and industrial
purposes, and its connection to deeper aquifers pose significant threats to public health
and the environment.

Given these challenges, a comprehensive assessment of the hydrochemical and
bacteriological quality of groundwater in the Oued Souf Valley is essential to prevent
further environmental and socioeconomic deterioration. This study aims to investigate
the factors, particularly those driven by human activities that influence the stability of
phreatic groundwater levels and the performance of the vertical drainage system in the
region. It will also evaluate the hydrochemical and bacteriological quality of phreatic
groundwater samples by measuring the concentrations of various physicochemical and
microbiological indicators and comparing them to WHO guidelines to identify
contamination sources and levels. Furthermore, the research will explore typical spatial
patterns of these parameters across urban, peri-urban, and agricultural areas and assess
the suitability of complex terminal and continental intercalary aquifers for drinking and
irrigation purposes based on hydrochemical analysis.
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2. Materials and methods
2.1. Environmental Setting of Oued Souf Valley
2.1.1. Hydrogeology

The phreatic aquifer (Guendouz et al., 2006), the shallowest groundwater reservoir in
the area, consists of fine sands, sandy clays, and gypsum lenses that form the water table.
Its thickness reaches about 100 meters, with water depths varying from 1 to 40 meters.
Below it lies a clay layer that prevents further infiltration. By 2015, over 35,000
traditional wells were tapping into this aquifer. Its average permeability is
approximately 10™* m/s, with horizontal transmissivity and storage coefficient values
around 1072 m?/s and 0.2, respectively. Recharge occurs naturally through rainfall
infiltration and runoff from the southern boundary of the Great Oriental Erg, with
episodic heavy rains, such as those in April 1947 and May 1967, also contributing
(Castany, 1982; Dervierux, 1957; Ben Hamida, 2005; DRE, 2015; Kherici et al., 1996).
The complex terminal aquifer, a deeper system, is made up of multiple geological
formations from the Cretaceous to Miocene periods. It lies 400-600 meters
underground, has an average thickness of about 400 meters, and contains fossil water
estimated to be 20,000-30,000 years old. In 2015, 182 deep wells accessed this aquifer,
28 used for irrigation and 154 for municipal and potable water supply (Abdous et al.,
2005; Guendouz et al., 2003; Moulla et al., 2003).

Beneath this lies the continental intercalary aquifer, which includes deposits from the
Middle Jurassic to Lower Cretaceous (Barremian and Albian stages). This formation,
composed of sandstones and clayey sandstones, is situated between 1,800 and 2,200
meters depth, with a thickness of 200400 meters. Its groundwater, also fossil water
aged 20,000-30,000 vyears, is accessed by just four deep wells, all for drinking water
due to its high temperature (above 70°C) (Cornet, 1964; Djennane, 1990). Figure 1
depicts the hydrogeological structure of the Northwest Sahara Aquifer System (NW/SAS).

The Oued Souf region, in the northeastern Mesozoic basin of the Sahara, is
dominated by fine-grained, compact, uniform sand dunes from the Quaternary period,
reaching up to 100 meters in the south. It features plateaus (Sahans) covered in
Quaternary gypsum, and saline depressions (Sebkha) located in the northern part of the
Oued Souf Valley (Bel et al., 1966; Bel et al., 1970; Sebaa et al., 2009; Ballais et al.,
2002). The geology of this Triassic basin (northeastern Sahara platform) consists of
formations from the Lower Cretaceous to Quaternary, resting atop Paleozoic marine
formations containing water, with total thicknesses exceeding 2,000 meters (BUSSON,
1972; Nesson, 1975; Giraud, 1978). Due to the region’s arid climate and
geomorphology, surface water resources are scarce (Dubief, 1965), making groundwater
the principal water source for diverse uses in the Souf region (Drouiche et al., 2013).

JCEEAS — Journal of Central and Eastern European African Studies — ISSN 2786-1902 155



156 A. Barkat, F. Bouaicha, Gy. Szabd @

Africa Research

A 5 Algeria Tunisia

Ain Guettara Hassi Inifel Ouargla NE

El Oued

Paleozoic

Paleozoic

P ic level of the Conti i y aquifer
B P e— Piczometric level of the Complex terminal aquifer

SE NW
— A Q Q Chott Merouane NW
& B C

(m)

L4 [ g Sandyclaysandmards i tatic level
$Z sands, cuaysandgypse.  [SnE| ypsiterous clays of the Miocene basis. e pever...
1] Coarse sands to gravel I and aquifer.
...... of the lower Pontian | of the Eocene Flow direction

Fine sands with clays Quaternary aquife
and gypsum intercalations, =——=-  (Water table)

Gypsiferous Clays with sand ==_"== Impermeable level
intercalations .

g SVEE }- Sands and clayey gravels. =={"=- Sands’ aquifer
Tt with
J siliceous or clayey in some places.

Figure 1. (A). Hydrogeological section of the North-West Sahara Aquifer System, (B).
Geological cross-section of Oued souf valley, bottom: (A—C) are log correlation of
Oued souf valley.

2.1.2. Topography

The Oued Souf Valley, located within the Great Eastern Erg in the Septentrional Sahara,
represents a low-lying topographical area often referred to as the "lower Sahara" due to
its modest elevation. The valley’s altitude fluctuates between 64 and 100 meters
(Cornet, 1964). lts slope is minimal, ranging from 0.03% to 0.16%, generally oriented
from south to north, with notable depressions near the city center of EI-Oued, as shown
in figure 2.

Despite being named a "valley," the Oued Souf does not contain a flowing
watercourse. Instead, it denotes a basin where sparse vegetation grows. According to
(Najah, 1970), three primary landforms can be identified in the region: Sahanes, Ergs,
and Sebkhas. The terrain reflects a combination of the Erg, characterized by dunes, and
the Sahane, a sandy landscape interspersed with rocky plateaus extending southward,
marked by alternating dunes and rocky ridges. The area features can be described as a
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depression zone with multiple chotts that slope eastward, and a Vast and prominent
dunes, called Ghroudes, located south of Souf, which can rise as high as 200 meters.

A key distinction in Souf’s topography lies between the Erg and Sahane regions. The
Erg, making up roughly three-quarters of the area, comprises sand accumulations in the
form of dunes. This sandy layer is substantial, typically several tens of meters thick.
Recent well-drilling has revealed even greater thicknesses than previously estimated: 70—
80 meters in southern Souf, 60 meters near El-Oued, gradually tapering to 30 meters in
the northern areas, where it becomes a thin layer over Sebkhas (DUTIL, 1971).

Figure 2. Integrated Topographic and Relief Map of Oued Souf region.

The Erg layer rests on an impermeable Pliocene clay bedrock. In contrast, the Sahane is
a flat, often stony, depressed zone characterized by enclosed basins encircled by dunes.
Sparse vegetation can grow in these basins, thriving on gypsum crusts. Sebkhas form
when intense heat causes water to evaporate, leaving behind salt deposits. These salt
pans arise from both phreatic and surface water sources, producing formations such as
chotts and sebkhas (Briere, 2000). Additionally, from a broader geological perspective,
sabkhas are saline basins typically found at the bottom of depressions in arid
environments, often isolated from direct marine contact. However, they may still be
linked to the sea through either narrow water channels (in deep basins) or by seepage
(in shallow basins). These connections can result in sporadic water overflows, further
increasing salinity. Over time, evaporation intensifies, leading to the formation of brine
and precipitation of evaporites either across the entire basin or concentrated at one end,
depending on the water depth (Medjber, 2014).
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2.1.3. Economic Activities in Oued Souf Valley

The Oued Souf region has experienced a notable boom in agriculture over the past few
decades, positioning it as one of Algeria’s most productive agricultural areas. Farming
activities are widespread across the region as presented in figure 3, with extensive areas
dedicated to various agricultural uses, including pastures, herbaceous crops, fruit tree
plantations, and fallow land. A key agricultural practice in the area is phoeniciculture
(date palm cultivation), particularly within the Ghout system, a culturally significant and
visually striking method that has shaped the Saharan landscape (Bataillon, 1955). This
system involves hand-digging large craters where palm trees are planted, utilizing
capillary action to draw water from the phreatic aquifer directly to the roots. This
technique eliminates the need for traditional irrigation systems (Remini et al., 2011).
Ghout systems take different forms such as circular, elongated, and rectangular
depending on soil type and wind patterns (Bensadd, 2011; Céte, 2006). The Ghout
areas extend southward to the Libyan border, bordered by the Nemamchas Mountains,
stretching east to Tunisia and west to the expansive Oued Righ oasis (Miloudi et al.,
2019).

Since the 19905, a significant shift has occurred in local farming practices with the
adoption of mini-pivot irrigation systems. Supported by the State and driven by local
farmers, this innovation has transformed Oued Souf into Algeria’s leading potato-
producing region. Today, the use of mini-pivot systems continues to expand alongside
traditional Ghout farming methods (Remini et al., 2019). Fertilizer use in the region is
tailored to local soil characteristics, crop types, and farmer preferences. Fertilizers
commonly applied include nitrogen-based types such as ammonium nitrate and urea to
encourage plant growth (Khouli et al., 2021), phosphorus-based fertilizers like
superphosphate and rock phosphate to support root development and fruiting
(Tsanakas et al., 2017), potassium-based fertilizers such as potassium chloride and sulfate
for overall plant health and quality (Ouarekh et al., 2021), and organic fertilizers
including compost and manure, which enhance soil structure and fertility (Abdallah et
al., 2021).

Industrially, Oued Souf hosts a diverse range of activities spread across nine
municipalities, covering sectors such as industrial chemistry, food and construction
materials, metallurgy, textiles, leather, hydraulic binders, electrical appliances,
mechanical and automotive industries (ANIREF, 2020). This industrial diversity makes
Oued Souf a key industrial hub in Algeria. Additionally, the mining sector plays a
significant role, with the region producing 78,500 tonnes of salt annually from the
Chotts, along with 5,500 cubic meters of construction sand and 18,930 cubic meters of
volcanic tuff each year.
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Figure 3. Land cover map of Oued Souf Valley.

2.2. Selection of Study Areas, Data Collection Procedures, and
Methodological Applications

This research focused on assessing the groundwater systems in Oued Souf, selecting
multiple study areas based on the targeted aquifers and available data. Specifically, it
examined the phreatic, complex terminal, and continental intercalary aquifers. To
analyze the spatial and temporal variation in the phreatic aquifer’s groundwater levels,
data were collected from 58 monitoring wells equipped with piezometers and level
probes forming part of the vertical drainage network. Measurements were taken from
the ground surface to the water table.

The physicochemical and bacteriological characteristics of the phreatic aquifer were
evaluated using 28 samples: 22 from the vertical drainage system and six from
surrounding agricultural and peri-urban locations. Parameters such as temperature (T),
pH, electrical conductivity (EC), and total dissolved solids (TDS) were measured in the
field with a Multi-350 i multiparameter instrument. Additional analyses followed
established methods (Rodier, 1984). In a separate study in November 2022, the
presence of heavy metals in the phreatic aquifer was analyzed using 14 samples and
quantified with microwave plasma atomic emission spectrometry (MP-AES 4200,
Agilent Technologies).

For the complex terminal aquifer, 49 groundwater samples were collected in March
2019 by ANRH- Agence Nationale des Ressources Hydrauliques and ADE- Algérienne
des Eaux (El Oued Unit), covering the Mio-Pliocene and Pontian aquifers across El Oued,
Debila, Guemar, Kouinine, Ourmas, Reguiba, and Taghzout. The continental intercalary
aquifer was studied using three wells in El Oued. This dataset was provided by ANRH
and ADE. Of these wells, eight represented the Mio-Pliocene layer, one the Pontian,
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and one the Lower Eocene. Figure 4 shows the study area with its administrative
subdivisions.

The research applied a comprehensive methodology to address the research
objectives. Geostatistical modeling with the ordinary kriging interpolation method was
used to predict spatial patterns of groundwater levels and physicochemical elements in
the phreatic and complex terminal aquifers (Webster et al., 2007). For mapping heavy
metals, the inverse distance weighting (IDW) method was chosen due to the limited
sample availability (Esri, 2012). For the environmental risk assessment of heavy metals
in the phreatic aquifer, indices such as the contamination degree, geoaccumulation index
(Igeo) (Singh et al., 2005), enrichment factor (EF) (Olivares-Rieumont et al., 2005), and
potential ecological risk index (PER) (Fei et al., 2017) were calculated. A human health
risk assessment was also conducted, evaluating long-term hazard levels through chronic
daily intake (CDI), hazard quotient (HQ), and hazard index (HI) (USEPA, 2006; USEPA,
1999; Qiu et al., 2019; Murray et al., 1995).

The water quality index by (Brown et al., 1973) was applied to assess groundwater
for drinking purposes across all hydrogeological units. Groundwater suitability for
irrigation was determined using ionic parameters (meg/L) and indices including
permeability index (Pl) (Doneen, 1964), Kelly’s ratio (KR) (Kelly, 1951), residual sodium
carbonate (RSC) (EI Bilali et al., 2021), residual base saturation coefficient (RBSC) (Amiri
et al., 2023), exchangeable sodium percentage (ESP) (Zhou et al., 2021), sodium
adsorption ratio (SAR) (Richards, 1947), total hardness (TH) (Todd, 1980), magnesium
hazard (MH) (Ragunath, 1987), and others. Regarding the pollution assessment,
groundwater pollution index (GPl) was applied to evaluate the contamination level
(Subba et al., 2018).
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Figure 4. The administrative subdivisions of Oued Souf Valley.
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3. Results and dliscussion
3.1. Analysis of Phreatic Groundwater Level Fluctuations and Influencing
Anthropogenic Factors (2009-2018)

Through geostatistical modeling and map analysis, three distinct spatial patterns in the
phreatic groundwater level were identified for the observation years 2008, 2009, 2014,
2016, and 2018. Initially, a noticeable rise in groundwater levels (upwelling) occurred
from 2008 to 2009, followed by a decline from 2014 to 2018, and finally, a recovery
from 2018 to 2021. The shallowest groundwater levels consistently appeared along a
northwest-southeast axis in the study area, while the deepest levels were consistently
found in the southwest during all observation years.

In 2008, the vertical drainage system began operating, resulting in shallow
groundwater levels averaging 5.42 meters below ground level (mbgl). In 2009, this
upwelling trend continued with similar patterns and an average depth of 5.06 mbgl,
indicating a slight increase. However, from 2014 to 2016, groundwater levels began to
decline, with shallowest depths gradually rising from the central northwest to the
southeast. Depths ranged from 7.97 mbgl in 2014 to 7.81 mbgl in 2016. By 2018, the
groundwater reached its deepest level at 12.74 mbgl, with a major spatial shift affecting
nearly half the study area, extending from the south-southwest to the northwest.
Although shallow areas maintained their general pattern, they experienced a significant
drop compared to earlier years (as depicted in Figure 5).

A comparison with 2008 showed the following changes in groundwater levels: a
decrease of 0.36 m in 2009, followed by more substantial declines of 2.56 m in 2014,
2.39 m in 2016, and 7.32 m in 2018 (as shown in figure 6). Despite these declines, by
2021 the groundwater level had risen to an average depth of 8.87 mbgl, representing a
recovery of approximately 3.9 meters compared to 2018 levels (figure 6).

Fluctuations in the water table also resulted in areas with deep groundwater levels
emerging in the northern part of the study area, extending westward and into the
center. The reasons for these fluctuations can be divided into three key stages:

1. Water table rise (2008-2009):

This phase was driven by several factors, including the region’s natural
topography and lack of natural drainage, poor coordination among water
management sectors in Oued Souf Valley, excessive use of deep groundwater
reservoirs, absence of sewage and drainage infrastructure, and leakages from the
potable water system. Additionally, the vertical drainage system was in its early
operational phase, requiring more time to effectively lower groundwater levels.
2. Water table decline (2009-2018):
The decline was due to multiple causes:

¢ Independent exploitation of different parts of the aquifer system, reducing water

recharge to the phreatic aquifer.
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e Rapid agricultural expansion, especially around El Oued, which increased
groundwater withdrawal and reduced infiltration.

e Replacement of septic tanks with vertical drainage systems in El Oued, which
resulted in a steady water table decline and less contamination in the phreatic
aquifer.

e Expansion of the sewage network in urban areas, reducing wastewater discharge
into the environment and thus lowering the water table.

3. Water table rise (2021):

The resurgence in 2021 was linked to factors such as:

e Drinking water supply inefficiencies, including high leakage rates, unauthorized
withdrawals, and illegal connections.

e Poor integration with other water systems and unmetered withdrawals for
firefighting, inspections, and maintenance.

e legal and illegal industries, including gypsum production, which discharge large
volumes of water into the environment.

e Issues in the drainage system, such as power outages and non-functional drains
since 2018.

e Operational problems at the wastewater treatment plant, especially breakdowns
in key equipment like the desander, causing reduced purification capacity and
overburdening the system. Additionally, the complex structure of the phreatic
aquifer, interspersed with shallow clay lenses, may also contribute to localized
groundwater rises (Khechana et al., 2016).
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Figure 6. Decline and rise rates over the years of the observation period.

3.2. Assessment of the Physicochemical and Bacteriological Quality of

Phreatic Groundwater

The physicochemical and bacteriological analyses of groundwater samples from the
phreatic aquifer are summarized in table 1, presenting a statistical overview of the
measured parameters. Groundwater temperatures ranged from 25°C to 31.4°C, which
could influence quality by promoting microbial growth and reducing gas solubility. The
pH values varied between 6.78 and 8.57, with most samples falling within the World
Health Organization’s (WHQO) recommended limits. However, approximately 32% of
the samples showed slightly acidic conditions. Electrical conductivity (EC) ranged from
3100 to 7500 pS/cm, exceeding WHO guidelines for potable water, indicating elevated
levels of total dissolved solids (TDS), which were also above recommended thresholds
in most cases. Turbidity levels were highly variable, affecting the aesthetic quality of the
water and indicating the need for treatment before consumption. Some samples were
found to be turbid or relatively turbid.

The concentrations of calcium (Ca?*), magnesium (Mg?*), sodium (Na*), potassium
(K*), and chloride (CI-) were generally high, frequently surpassing WHO drinking water
standards, though compliance varied across individual samples. Many samples also
exceeded WHO limits for nitrate (NOj), nitrite (NO,), and ammonium (NH,*),
suggesting possible contamination from agricultural runoff, sewage infiltration, or
industrial discharges. Fluoride (F-), sulfate (5O,%), and phosphate (PO,3*) concentrations
were above recommended levels in certain samples, though sulfate levels were generally
within acceptable ranges.

Levels of dissolved oxygen (DO), chemical oxygen demand (COD), and biological
oxygen demand (BOD) wvaried across samples, reflecting different levels of
biodegradability and contamination. Fecal and total coliform counts were high in
several samples, indicating significant bacterial contamination.
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To assess water quality and pollution levels, the Groundwater Pollution Index (GPI)
was applied on the Phreatic groundwater samples, and the results revealed the presence
of a Very high pollution across all of the samples as shown in table 2.

Table 1. Statistical overview of the physicochemical and bacteriological parameters
analyzed in the phreatic groundwater aquifer samples.

Parameters Mean sD Skewnes - Kurtosi Min Media Max WH
s s n O
T(°C) 27.8 1.61 0.47 -0.18 25 27.8 31.4 -
.5—
pH 7.25 0.45 1.63 2.32 6.78 7.09 8.57 g 5
EC (us/cm) 4386 1310 1.28 0.42 3100 3850 7500 1000
Turbidity
16.9 21 1.17 0.08 0.36 5.52 71.6 5
(NTU)
TDS (mg/l) 2350 1089 0.66 1.66 500 1925 5435 500
148. 440. 1050.
Ca?* (mg/l) 714.4 4 8 0.23 0.1 9 705.4 : 75
Mg?+ (mg/l) 381.3 177.1 -0.25 -0.89 36.4 429.1 705.1 50
232.
Na* (mg/l) 325.3 91.0 145 1.52 23 290.5 582.2 200
K+ (mg/l) 20.6 6.28 -0.03 -0.81 9.55 21.7 33.8 12
157. 124.
Cl- (mg/1) 378.9 357 2.01 4.69 3 4 337.3 914.7 250

NO; (mg/l) 27.7 38.1 2.17 5.1 0.1 12.8 159.4 50
HCO5" (mg/l) 162.2 94.6 0.96 0.82 36.6 142.1 429.4 120
F- (mg/l) 1.47 0.65 1.66 3.13 0.69 1.3 331 15
5042 (mg/l) 199.3 44.3 -0.98 1.2 68.2 204.2 266.1 250
PO (mg/l) 0.67 1.36 3.93 17.4 0 0.19 6.92 1

DO (mgOy/I1) 0.25 0.26 0.89 -0.48 0.02 0.13 0.83 -
NH,* (mg/l) 0.57 0.8 3.25 12.6 0.08 0.26 4 -
NO, (mg/l) 0.88 1.88 2.12 3.03 0 0.05 6 -

COD (mg/1) 2769 70.1 -0.35 -1.77 184  291.1 352 -
BODs (mg/l) 121.4 19.8 0.06 -0.66 76.8 118.9 152.3

Total coliforms 406.

2041 -0.51 -0. 12 212 25 -
(UFC/100 mi) 04 8 0 0.83 90 3 80
Fecal coliforms 120.

20.5 -0.02 -0.51 1 1 5 -
(UFC/100 ml) 320 8 0.0 0 00 3 40

Table 2. The application results of the groundwater pollution index (GPl) on the
Phreatic groundwater samples.

Number of

samples

Range Category
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3.3. Spatial Analysis of the Phreatic Groundwater Quality

Based on the applied spatial analysis of hydrochemical parameters in the phreatic

groundwater aquifer, | identified three distinct spatial patterns, as illustrated in Figures
7,8, and 9:

1.

Preurban and Agricultural Areas:

High concentrations of electrical conductivity (EC), sodium (Na*), potassium
(K*), chloride (Cl-), bicarbonate (HCO3’), phosphate (PO,*), and dissolved
oxygen (DO) indicate both natural and human influences. Elevated EC suggests
saline intrusion or fertilizer runoff, leading to increased mineral content in
groundwater. High Na*, K*, and Cl levels are often linked to agricultural
fertilizers and soil composition, pointing to agricultural activities. Increases in
HCO3; may result from natural soil-water interactions or farming practices
affecting chemical balance. PO,3 concentrations reflect agricultural runoff,
particularly from fertilizers, suggesting nutrient-enriched contamination. High
DO levels typically indicate good aeration and a healthy ecosystem, but they
may fluctuate due to temperature changes, organic matter decomposition, or
pollution.

Urban Areas:

Elevated calcium (Ca?*), magnesium (Mg?*), fluoride (F-), nitrite (NO,’), and
ammonium (NH,*) levels are linked to urban influences. Ca** and Mg?*,
contributing to water hardness, may result from mineral dissolution, urban
infrastructure decay, or mixed agricultural and urban runoff. Increased fluoride
likely stems from industrial discharges or urban runoff, indicating human and
industrial activity. NO,~ and NH,* levels suggest contamination from urban
wastewater, sewage, and industrial sources.

. Common to Both Agricultural and Urban Areas:

High nitrate (NOj’), sulfate (SO,*), biological oxygen demand (BOD), and
chemical oxygen demand (COD) levels point to multiple pollution sources. NO3-
concentrations are often caused by fertilizer runoff from agriculture and urban
sewage. SO,> may originate from industrial emissions or agricultural chemicals.
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High BOD and COD reflect organic pollution from sources such as farming
runoff, urban sewage, and industrial waste, signifying high oxygen demand to
break down organic materials in the water.
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Figure 7. Spatial distribution of the chemical elements in the phreatic groundwater:
(A). EC, (B). &+, (C). Mg?*, (D). Na*, (E). K*.
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The analysis revealed significant variations in the strength and structure of spatial
dependencies for the hydrochemical parameters within the study area. Parameters like
HCO3, F, PO,*, and COD demonstrated strong spatial dependency, indicating a
pronounced correlation between data points. This led to clear separations in
interpolated levels and the emergence of distinct patterns, resulting in a high degree of
spatial autocorrelation. In contrast, parameters such as EC, Mg?+, $O,%, DO, and NO,-
showed weak spatial dependency, suggesting low correlation across locations and
minimal separation in interpolated levels. The remaining parameters exhibited
moderate spatial dependency, reflecting localized clustering, trending, or spatial
continuity. This variability likely arises from both local and regional factors, including
the fluctuating phreatic groundwater level and its impacts on water quality.

3.4. Human Health Risk Assessment and the Presence of Heavy Metals
The analysis of metal concentrations in the phreatic groundwater aquifer of the Oued
Souf Valley revealed that aluminum (Al3*), iron (Fe?*), manganese (Mn?*), boron (B3*),
nickel (Ni%*), and lead (Pb?*) were present in varying concentrations, often exceeding
WHO limits in different samples from both urban and agricultural zones, as summarized
in table 3.

Table 3. Statistical summary of the analyzed heavy metals from the phreatic
groundwater aquifer of the Oued Souf Valley and its comparison with WHO

standards.

Variables Mean sD cvV Min Median Max WHO 2008
T (°C) 27.85 1.72 0.06 25 27.80 31.40 -
pH 7.31 0.52 0.07 6.78 7.1 8.57 6.5-8.5
E

¢ 4035.71 858.02 0.21 3100 3725 6200 1000
(uS/cm)
Al3* (mg/l) 0.31 0.08 0.30 0.22 0.29 0.52 0.2
Fe?* (mg/1) 0.21 0.09 0.43 0.1 0.19 0.40 0.3
M 2+

n 0.44 0.1 0.25 0.30 0.40 0.71 0.5
(mg/1)
B3 (mg/l) 0.63 0.43 0.68 0.19 0.45 1.41 0.5
2+
Ba 0.015 0.01 0.63 0.004 0.01 0.03 0.7
(mg/1)
Bi+ (mg/l) 0.14 0.1 0.75 0.00 0.15 0.28 -

24+
Cd <Lod <Lod <Lod <lod <Llod <Lod 0.003
(mg/1)
C02+

<lLod <lLod <Lod <lod <Llod <Lod -

(mg/1)
Cr3+ (mg/l) 0.01 0.01 1.23 0.00 0.00 0.02 0.05
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Cu2+
0.004 0.01 1.61 0.00 0.00 0.02 1
(mg/1)
Lit (mg/l) <Lod <Lod <lod <Llod <Lod <Lod -
N'2+
l 0.01 0.01 0.83 0.00 0.01 0.02 0.02
(mg/1)
Pb2*
0.01 0.01 2.71 0.00 0.00 0.05 0.01
(mg/1)
Sr>* (mg/l) 7.06 2.44 0.35 177 7.76 9.94 -
Zn2+
0.01 0.01 1.61 0.00 0.00 0.04 3
(mg/1)
6 i
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Figure 10. Box plot of enrichment factors of each analyzed metal in the phreatic
groundwater aquifer.

Based on the conducted investigation into metal enrichment trends in the phreatic
aquifer, presented in figure 10, the observed order of metal concentrations was Al3*>
B3> Sr?*> Mn2*> Ni?*> Pb?*> Cr3*> Ba?*> Cu?*> Zn?*. Minor enrichment of barium
(Ba%*), chromium (Cr3*), copper (Cu?*), and zinc (Zn?*¥) were consistent across all
samples, indicating a likely geogenic origin. Aluminium showed minor enrichment in
nine samples and moderate enrichment in five, suggesting that anthropogenic activities
contributed to elevated Al?* levels in many parts of the study area. Manganese exhibited
minor enrichment overall, but six samples showed higher levels, pointing to human-
related sources such as wastewater discharge and farming. Boron was slightly elevated
in eight samples and moderately enriched in others, with several cases indicating
anthropogenic input. Nickel mostly displayed minor enrichment, with a few instances
of moderate anthropogenic influence. Both lead and strontium showed variability, with
some samples indicating moderate anthropogenic contributions. Overall, six samples
were identified as influenced by human activities.

In terms of ecological risk, the analyzed metals generally posed a low threat, except
in two samples. Sample $13 showed considerable ecological risk, while sample $14
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indicated a high risk, specifically due to lead. However, overall ecological risk across all
metals and samples was assessed as low.

Regarding potential human health risks from exposure to the detected metals in the
phreatic aquifer, figure 11 presents the hazard quotient (HQ) and hazard index (HI)
results for both adults and children. For adults, HI values exceeded 1 in eight samples,
indicating a significant long-term health risk primarily from high concentrations of Al3+,
along with Fe?*, Mn?*, B3*, Ni?*, and Sr?* in certain samples. For children, HQ values
for Mn?* surpassed 1 in nine samples, and Sr?* levels were notably high in two samples,
suggesting a potential non-carcinogenic health threat.

The levels of Fe?*, Mn?*, B3*, Ni?+, Pb2*, Sr?*, and Al3* detected in the groundwater
indicate a range of health impacts. Excess iron can contribute to chronic conditions such
as cardiovascular disease and diabetes. Manganese exposure is linked to neurotoxic
effects, while boron can cause gastrointestinal problems and kidney damage. Nickel
exposure is associated with lung fibrosis, kidney disease, and respiratory cancers. Lead
poses serious risks to children’s development and cognitive function, and in adults, it
can elevate blood pressure and impair fertility. High strontium levels can negatively
affect bone density, and aluminum is linked to neurological conditions, including
Alzheimer’s disease.

Overall, the HI scores for children were alarmingly high, covering all wells in the
study area. This suggests a significant, long-term health risk, particularly non-
carcinogenic in nature. The high HI scores not only highlight immediate concerns but
also point to potential future risks. Prolonged exposure to these contaminants could
result in chronic health problems, especially affecting children's growth and
development. Since children are inherently more wvulnerable to environmental
pollutants due to their developing bodies and higher intake relative to body weight, the
elevated HI scores for this group are particularly concerning. Therefore, it is crucial for
relevant authorities such as environmental and public health agencies to develop and
implement strategies aimed at reducing these risks and protecting the health of children
in the affected area. Community engagement and public awareness about potential
hazards and protective measures are essential steps to safeguard the well-being of local
residents, particularly children.
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Figure 11. The results of health risk assessment: (A). Box plot of Hazard Quotients
(HQ,) of eleven heavy metals through ingestion exposure of adults, (B). Box plot of
Hazard Quotients (HQ,) of eleven heavy metals through ingestion exposure of
children, (C). Hazard Index (HI) values eleven heavy metals for both cases.

3.5. Drinking and Irrigation Suitability of Deep Aquifers (Complex Terminal

and Continental Intercalary)

The conducted hydrochemical assessment of the complex terminal groundwater, as
detailed in table 4, revealed that both cation and anion concentrations in various wells
of the complex terminal aquifer generally exceed the World Health Organization’s
(WHO) drinking water standards. This high mineralization likely contributes to poor
water quality. However, nitrate levels were mostly within acceptable limits, which is
likely due to natural purification processes, including denitrification occurring near
discharge zones and nitrate fixation facilitated by clay layers.
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The Water Quality Index (WQI) results show that a significant portion of the sampled
wells (55.10%) exhibited poor to very poor water quality. Only a small number of
samples reflected good water quality, and just two were deemed completely unfit for
drinking purposes. Regarding irrigation suitability, various applied water quality indices
indicated that the groundwater samples from this aquifer range from moderately
suitable to unsuitable for irrigation use.

Table 4. List of the physicochemical parameters analyzed in the complex terminal
groundwater aquifer samples.

Variables Mean s.D Minimum Maximum  WHO
T (°C) 23.12 5.05 11.80 35.10 -

pH 7.49 0.15 7.23 7.84 6.5-8.5
EC (us/cm) 4131.48 382.97 2760.00 4730.00 1000
Salinity (%) 2.64 0.26 1.80 3.00 -

TDS (mg/l) 2650.92 246.36 1766.00 3027.00 500
Turbidity (Ntu) 0.43 0.52 0.07 3.23 5

Dry Residue (mg/l) 3075.10 478.89 1900 3980 -
Total - Alkalinity 130 67 2717 83.00 189.00 i
(mg/1)

Ca?* (mg/l) 274.96 36.85 200.40 360.72 75
Mg?* (mg/l) 122.74 30.19 63.12 184.72 50
Na* (mg/l) 379.41 57.93 137.00 600.00 200
K+ (mg/1) 33.35 7.01 15.00 50.00 12

Cl (mg/l) 888.59 144.18 457.34 1240.86 250
SO (mg/l) 729.09 152.21 193.06 997.41 250
HCO; (mg/l) 167.98 33.50 101.26 213.58 120
NO; (mg/l) 22.39 6.62 1.91 34.90 50

The analysis of the continental intercalary groundwater aquifer revealed a range of
conditions. Both electrical conductivity (EC) and total dissolved solids (TDS) were
elevated, indicating significant mineralization and surpassing the World Health
Organization’s (WHO) recommended limits for safe drinking water. All major cations
(Ca?t, Mg?*, Na*, K*) and anions (CI-, $O,%, HCO3'), with the exception of nitrate (NO3-
), were found at concentrations above WHO standards, rendering the water unsuitable
for direct human consumption. Phosphate (PO,3*-) and ammonium (NH,*) levels were
also high, and iron (Fe?*) exceeded safe limits in one of the samples, as detailed in table
5. Despite these issues, the Water Quality Index (WQI) classified all samples from this
aquifer as ‘good’ for drinking purposes. However, when evaluated for irrigation use,
the same samples were rated from moderate to poor based on several indices, including
EC, sodium percentage (%Na), total hardness (TH), permeability index (Pl), potential
salinity (Ps), and Kelly’s ratio (Ka). This apparent contradiction—where the water is
deemed suitable for drinking but less favorable for irrigation—can be explained by the
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different implications of water quality for human health versus soil and plant health.
While the water may meet short-term drinking water criteria, its high salinity, sodium
content, and other dissolved ions pose long-term risks to soil structure, permeability,
and overall plant health when used for irrigation. This highlights how the varied effects
on humans compared to crops and soil were central to the categorization of the
continental intercalary groundwater samples for both drinking and irrigation purposes.

Table 5. Statistical summary of the continental intercalary groundwater samples.

Parameters Mean s.D Minimum  Median Maximum \ZX(})I]_I]O
T (°C) 32.8 5.51 26.45 35.7 36.25 -
PH 7.19 0.09 7.10 7.21 7.27 6.5-8.5
EC (uS/cm) 2983.33 296.41 2795 2830 3325 1000
TDS (mg/l) 1909.33 189.69 1789 1811 2128 500
Turbidity

2.81 2.22 0. 2.3 5.24 5
(NTU) 8 88
Ca?* (mg/l) 232.46 30.06 202.40 232.46 262.52 75
Mg?* (mg/l) 100.87 21.29 80.21 99.65 122.74 50
Na* (mg/l) 274.33 92.38 220 222 381 200
K+ (mg/l) 34.67 8.74 25 37 42 12
NH,* (mg/1) 0.31 0.08 0.22 0.35 0.36 -
Cl- (mg/1) 652.34 30.91 631.06 638.15 687.79 250
SO,#(mg/l) 604.49 108.90 541.21 542.02 730.24 250
HCO; (mg/l) 153.72 14.99 142.74 147.62 170.8 120
NO;- (mg/l) 4.81 5.20 1.36 2.28 10.79 50
PO, (mg/l) 1.24 0.21 1.01 1.32 1.40 1
Fe?* (mg/l) 0.54 0.61 0.17 0.20 1.25 0.3

4. Conclusion

This study provides a comprehensive evaluation of the hydrochemical, bacteriological,
and heavy metal contamination in the groundwater systems of the Oued Souf Valley, a
region critically reliant on these water resources for agriculture, domestic use, and
industrial activities. The findings reveal alarming levels of contamination in the shallow
phreatic aquifer, including excessive concentrations of salts, heavy metals (notably
aluminum, lead, and manganese), and bacteriological pollutants, posing significant risks
to public health—particularly for wvulnerable populations such as children. Spatial
analyses clearly indicate that both urban and agricultural activities are primary
contributors to these pollution patterns. In contrast, while the complex terminal and
continental intercalary aquifers exhibit comparatively lower levels of contamination,
their water quality still frequently surpasses safe thresholds for drinking and irrigation,
highlighting the widespread impact of anthropogenic pressures.
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The importance of these results lies in their clear demonstration of the
interconnectedness between human activity, environmental degradation, and public
health risks. They underscore the urgent need for integrated water management
strategies that include enhanced monitoring of groundwater quality, stricter regulations
on waste disposal and agricultural practices, and the rehabilitation of essential water
infrastructure. Moreover, this research emphasizes the critical need for public health
interventions and awareness programs to mitigate the long-term health risks, particularly
for children, who are disproportionately affected by contaminated water supplies.
Ultimately, the insights gained from this study provide a vital foundation for designing
sustainable water management policies aimed at preserving the fragile ecosystem of the
Oued Souf Valley, ensuring water security, and advancing public health and
socioeconomic stability in this arid and vulnerable region.
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